PDFS of Upper Tropospheric Humidity

Darryn Waugh, Ju-Mee Ryoo, Tak Igusa Johns Hopkins University

Introduction

Climate is sensitive to upper tropospheric humidity, and it is important to know

- the distributions of water vapor in this region, and
- the processes that determine these distributions.

We examine the probability distribution functions (PDFs) of upper tropospheric relative humidity (RH) for measurements from

- Aura MLS
- Aqua AIRS
- UARS MLS

Consider spatial variations of PDFs. Focus here on DJF, ~215hPa

Also compare with theoretical distributions (generalization of Sherwood et al (2006) model).

Climatological UT Relative Humidity

DJF 200-250hPa Relative Humidity (AIRS)

- Subtropics is drier than the Tropics
- But also significant zonal variations

PDFs: AIRS

Large variation in PDFs - spread, skewness, ...

PDFS: AIRS - Aura MLS Comparison

Good agreement between AIRS and Aura MLS, with some exceptions.

Theoretical Model: Sherwood et al (2006)

Sherwood et al (J. Clim, 2006) showed that PDFs of Relative Humidity (R) in simple "advection-condensation" model are of the form:

 $\Gamma(R) = r R$

where

$$r = au_{ ext{dry}} / au_{ ext{moist}}$$
 ,

 τ_{dry} is drying time due to subsidence [R~exp(-t/ τ_{dry})],

 τ_{moist} is time scale of random remoistening events $[P(t) = \exp(-t/\tau_{\text{moist}}) / \tau_{\text{moist}}], .$

Larger r implies more rapid remoistening

Theoretical Model: Generalized Version

Generalized version of Sherwood et al model:

$$\mathbf{P}(R) = \frac{k^k r^k R^{kr-1}}{\Gamma\left(k\right)} \left(-\log R\right)^{k-1} \qquad r = \frac{\tau_{\mathrm{dry}}}{k \tau_{\mathrm{moist}}}$$

$$r = \frac{\tau_{\text{dry}}}{k\tau_{\text{moist}}}$$

where time since last saturation is now modeled as

$$\mathbf{P}(t) = \frac{\exp\left(-t/\tau_{\mathrm{moist}}\right)t^{k-1}}{\tau_{\mathrm{moist}}^{k}\Gamma\left(k\right)}$$

k is measure of randomness of remoistening events.

k=1 is original Sherwood et al. model.

- Larger r implies more rapid remoistening
- Larger k implies less random remoistening processes.

PDFs: Data and Model

How well do the theoretical models fit the observed PDFs?

Model can fit the observed PDFs, with r and k varying with location.

$r = \tau_{dry} \, / \, \tau_{moist}$

Spatial Variations in r

Good agreement between different data sets.

All show
r>1in tropical convective regions,
and
r<1 in dry regions.

Expected as larger r implies more rapid remoistening

```
__AIRS (2002-07)
__AIRS (2005-07(match with MLS))
__UARS MLS (1992-94)
__Aura MLS (2005-07)
```


Convective Regions:

- r>1 and low k
- Rapid, random remoistening

Non-convective Regions:

- r<1 and high k</p>
- Slower, more regular remoistening (horizontal transport)

Aura MLS - AIRS bias

There are some differences between MLS and AIRS PDFs.

Differences are not simply a function of RH.

Is there a simple mapping between MLS and AIRS?

Aura MLS - AIRS bias

Conclusions

Several robust features are found in the observed PDFs from all three data-sets (Aura and UAR MLS, AIRS):

- Well fit by a generalized version of the Sherwood et al. (2006) theoretical model.
- Consistent spatial variations in "r" (ratio of drying and moistening times) and "k" (randomness of moistening process).
- Variations in r and k can be related to variations in the physical processes controlling the RH distributions.

Differences between MLS and AIRS do exist. There is a rather simple mapping, which depends on OLR and RH, to account for bias between MLS and AIRS.